Quasi-invariant measures on the path space of a diffusion
نویسنده
چکیده
The author has previously constructed a class of admissible vector fields on the path space of an elliptic diffusion process x taking values in a closed compact manifold. In this Note the existence of flows for this class of vector fields is established and it is shown that the law of x is quasi-invariant under these flows. Résumé L’auteur a précédemment construit une classe de champs de vecteurs admissibles sur l’espace des chemins d’une diffusion elliptique x prenant valeurs dans une variété compacte fermée. Dans cette Note l’existence des flots pour cette classe de champs de vecteurs est établie et on montre que la loi de x est quasi-invariante sous ces flots. 1Research partially supported by NSF grant DMS-0451194.
منابع مشابه
SEMIGROUP ACTIONS , WEAK ALMOST PERIODICITY, AND INVARIANT MEANS
Let S be a topological semigroup acting on a topological space X. We develop the theory of (weakly) almost periodic functions on X, with respect to S, and form the (weakly) almost periodic compactifications of X and S, with respect to each other. We then consider the notion of an action of Son a Banach space, and on its dual, and after defining S-invariant means for such a space, we give a...
متن کاملروش انتگرال مسیر برای مدل هابارد تک نواره
We review various ways to express the partition function of the single-band Hubard model as a path integral. The emphasis is made on the derivation of the action in the integrand of the path integral and the results obtained from this approach are discussed only briefly. Since the single-band Hubbard model is a pure fermionic model on the lattice and its Hamiltonian is a polynomial in creat...
متن کاملErgodic decomposition for measures quasi-invariant under a Borel action of an inductively compact group
The aim of this paper is to prove ergodic decomposition theorems for probability measures quasi-invariant under Borel actions of inductively compact groups (Theorem 1) as well as for σ-finite invariant measures (Corollary 1). For infinite measures the ergodic decomposition is not unique, but the measure class of the decomposing measure on the space of projective measures is uniquely defined by ...
متن کاملOn the two-wavelet localization operators on homogeneous spaces with relatively invariant measures
In the present paper, we introduce the two-wavelet localization operator for the square integrable representation of a homogeneous space with respect to a relatively invariant measure. We show that it is a bounded linear operator. We investigate some properties of the two-wavelet localization operator and show that it is a compact operator and is contained in a...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2006